

LPR Contaminant Mapping Approach

Presentation to EPA March 11, 2015 EPA Region 2 Office

Outline

- Objectives of the mapping
- Predictability of sediment contaminant concentrations (patterns relate to bed evolution)
 - Focus on 2,3,7,8-TCDD, but most other contaminants show comparable patterns
- Partitioning the river to account for geomorphological influences on concentrations
- Approach to LPR contaminant mapping
 - Precedent for Using Thiessen Polygon Interpolation for RI/FS Work
 - Apply Thiessen Polygon interpolation within partitioned river

Objectives of the Mapping

- Approximately delineate the regions of high concentration to support the goal of characterizing nature and extent of contamination
- Provide an approximate (i.e., "FS Level")
 representation of sediment contaminant
 concentrations throughout the LPR
 - Needed to examine remedial alternatives
 - Needed to model contaminant fate and transport and bioaccumulation
- Objectives recognize that more refined mapping will be undertaken as part of remedy design

Data Used in the Mapping

			Data Counts					
Study Name	Years	Centroid	TCDD	Total PCBs	Mercury	HMW PAH	LMW PAH	Total DDx
Honeywell International Sampling Programs	2005, 2006	no	2	2	2	2	2	0
USEPA/MPI – High-Resolution Sediment Coring Program	2005, 2006, 2008	no	1	1	0	1	1	0
USEPA/MPI – EMBM	2007, 2008	no	18	18	18	18	18	9
Low-Resolution Coring Program	2008	yes	90	91	91	91	91	90
USEPA/MPI – Sediment Sampling Program	2008	no	10	10	17	10	10	10
Benthic Program Surface Sediment Sampling (2009)	2009	no	110	110	110	0	110	110
Benthic Program Surface Sediment Sampling (2010)	2010	no	21	21	21	0	21	21
River Mile 10.9 Characterization	2011	yes	54	54	54	54	54	54
Low-resolution Coring Program Supplemental Sampling Program	2012	yes	85	85	85	85	85	85
Tierra – Focused Sediment Investigation (RM 10.9)	2012	no	6	0	0	0	0	0
River Mile 10.9 Addendum A	2012	yes	15	15	15	15	15	15
Low-resolution Coring Program Supplemental Sampling Program 2	2013	yes	75	74	74	72	72	74

Most of the samples collected between 2008 and 2013

Channel Concentrations Relate to Erosion/Deposition History

As Expected, Channel Locations Lacking Post-1949 Sediments Have Low Concentrations

Highest Concentrations in Channel at Locations Having Post-'49 Sediments, But Erosion/No Change Since '66

Transects to
Examine Bed
Evolution and
Contaminant
Concentrations

Example of Relationship Between Surface Sediment Concentration and Bed Evolution

Transects to
Examine Bed
Evolution and
Contaminant
Concentrations

Example of Relationship Between Surface Sediment Concentration and Bed Evolution

Local Patterns Exist

Patterns Exist at the Sub-Deposit Scale

Along-River Correlation Within Deposits

 Cross-river gradients reflecting geomorphology

Variogram Shows Along-River Concentration Correlation on the Scale of Several Hundred Feet

RM 10.9 Deposit

Straightened River, All Data

RM 7.8-14 Concentrations Vary Among the Sediment Types

Note: The 'Gravel, Sand and Coarse Material' category combines both 'Gravel and Sand' and 'Rock and Coarse Gravel' 2005 Side Scan Sonar classifications.

Broad-Scale Averaging (even within geomorphic units) Does Not Take Account of the Evident Patterns

Disadvantage of Averaging is Seen When Comparing Averages to the Data

RM 7.5 – 10x vertical exaggeration

Approx. Boundary of EPA Geomorphic Unit

River Stratified to Account for the Concentration Patterns

Information Exists to Appropriately Partition the River

- Bathymetry measurements allow separation of shoals and channel
- Side-scan sonar and probing map sediment type
- Bathymetric differencing between surveys provides means to approximately identify net erosion/deposition patterns

Acres for the Various Partitions of the River

	RM 0 – RM 8	RM 8 – RM 14	RM 14 – RM 17.6
Shoal	377	57	10
Non-dep channel	19		
Mixed dep channel	50		
High dep channel	112		
Silt deposits	3	40	
Channel		119	106
RM10.9 Silt Deposit		13	
Downstream Channel	110		

Sampling Density

Sample Count for Surface Sediments

	RM 0 – RM 8	RM 8 – RM 14	RM 14 - RM 17.6
Shoal	114	50	5
Non-dep channel	4		
Mixed dep channel	24		
High dep channel	32		
Silt deposits	4	64	
Channel		71	24
RM10.9 Silt Deposit		64	
Downstream Channel	24		

Samples Per Acre for 2,3,7,8-TCDD Surface Sediments

	RM 0 – RM 8	RM 8 – RM 14	RM 14 – RM 17.6
Shoal	0.30	0.88	0.52
Non-dep channel	0.21		
Mixed dep channel	0.48		
High dep channel	0.29		
Silt deposits	1.39	1.60	
Channel		0.60	0.23
RM10.9 Silt Deposit		4.94	
Downstream Channel	0.22		

Uncertainty

Major Sources of Uncertainty

- Sparseness of the sampling locations
- Short-scale spatial variability ("noise")
- The factors that drive concentration are only approximately known
 - Erosion/deposition history
 - Sediment grain size and organic carbon content
 - Location of original sources

Implications of Uncertainty

- Correlation among measured concentrations complicated by variability in factors driving concentration and imprecision of the partitioning of the river
- Any interpolation approach yields an approximate mapping of concentrations
 - Sufficient to identify regions of higher and lower concentrations
 - Sufficient for the relative evaluation of remedial alternatives

Changes from FS to Design for Fox River OU4

- 2003 ROD specified remediation of 1,030 acres
- Basis of Design Report that included a dense predesign sampling set specified remediation of 1,170 acres

Mapping is Only One Source of Uncertainty

- Exposure changes resulting from remediation
 - Concentrations in targeted areas
 - Concentrations outside targeted areas
 - Post-remedy residuals
 - Effectiveness of capping
 - Recontamination from unremediated areas, dredging releases and boundaries
- Limitations of the models
 - Coarse spatial scale relative to concentration patterns and erosion/deposition behavior
 - Model error
- Imprecise assumptions about exposure, future conditions and the progress of remediation

Dealing With Mapping Uncertainty

- Intensive pre-design sampling improves concentration estimates, but the other sources of uncertainty remain
- The uncertainty of remedy effectiveness is a reason for Adaptive Management
- Accounting for mapping uncertainty in the FS will not materially increase the understanding of true remedy effectiveness
 - All we really know is that the final determination of the area above a RAL will yield a result that is more or less than was specified in the FS, but experience indicates it will not be radically different

Interpolating Within the Partitioned River Done Using Thiessen Polygons

Examples of Where Thiessen Polygons Were Used to Map Contamination

- Hudson River
- Fox River
- Lower Duwamish Waterway
- Portland Harbor
- Grasse River
- Onondaga Lake
- Buffalo River
- Housatonic River

Hudson River Feasibility Study

Fox River Basis of Design Report

Grasse River Analysis of Alternatives Report

Onondaga Lake ROD

Lower Duwamish Waterway Feasibility Study

IDW used for other chemicals with much denser data sets

Portland Harbor PCB Concentration Mapping

Portland Harbor FS - Sediment Volume Mapping

Advantages of Thiessen Polygons

- Take account of spatial correlation, though in a limiting sense
- Reproduce the variance of the underlying data-set
 - Do not damp out the high and low parts of the concentration distribution

Spatial Correlation Makes Polygons More Accurate Than Broad-Scale Averaging

Example in which yellow locations are measured and used to interpolate between them with polygons or averaging

Mapping Results

Higher 2,3,7,8-TCDD Concentrations in Discrete Pockets

Comparison of 2,3,7,8-TCDD and PCB Mapping

Conclusions

- Organized patterns support mapping of concentrations based on interpolation among the point measurements
 - Areas of high and low sediment contamination are identifiable (though not the precise concentration) and related to
 - Long-term deposition patterns
 - Geomorphology
 - Recent erosion/deposition
 - Concentrations tend to be higher at locations where sediments deposited between 1949 and the mid-1960s are within the top 6 inches today
- Thiessen polygon interpolation has strong precedent and is favored because it preserves the distribution of concentrations in the river

Backup

